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Abstract—Existing low-rank tensor completion (LRTC) ap-
proaches aim at restoring a partially observed tensor by imposing
a global low-rank constraint on the underlying completed tensor.
However, such a global rank assumption suffers the trade-
off between restoring the originally details-lacking parts and
neglecting the potentially complex objects, making the com-
pletion performance unsatisfactory on both sides. To address
this problem, we propose a novel and practical strategy for
image restoration that restores the partially observed tensor in
a coarse-to-fine (C2F) manner, which gets rid of such trade-off
by searching proper local ranks for both low- and high-rank
parts. Extensive experiments are conducted to demonstrate the
superiority of the proposed C2F scheme. A demo is provided in
the supplementary, and the complete codes will be made available
upon acceptance of this paper.

I. INTRODUCTION

In the past decade, computer vision and image processing
have received immense attention due to the proliferation of
deep learning and artificial intelligence (AI). Image restoration
is one of the vital research topics in this field as the need for
large amounts of high quality images is intrinsic to various AI
tasks. Image restoration aims to recover the missing pixels in
an image based on only partially observed data, thus forming
a clearer image. Therefore, deciphering the relations between
the known and unknown entries is a key challenge in image
restoration tasks.

Existing approaches for image restoration can generally be
divided into four categories [1], namely, partial differential
equations (PDEs)-based diffusion, examplar-based techniques,
hybrid algorithms, and low-rank tensor completion (LRTC)
methods. PDEs-based methods [2]–[4] solve the restoration
problem by using smoothness priors to diffuse local struc-
tures from the known region to the missing unknown region.
Whereas the examplar-based techniques [5], [6] restore the
missing parts by sampling, copying, or stitching together
the observed parts of the image. Since PDEs-based diffusion
works well when completing missing areas like straight lines
and curves but shows cons in texture recovering that examplar-
based techniques are good at, hybrid algorithms [7], [8] are
proposed to make the first two categories complementary so
as to restore texture while preserving edges or structures. We
remark that all these aforementioned schemes require searches
to capture the local correlation or dependencies among the
pixels. Different from them, LRTC methods [9]–[11] aim to
dig out the statistical properties of the image and capture the
global structure of the input data.

Fig. 1. There is a global low-rank assumption in most LRTC methods,
which can be regarded as a trade-off between restoring the originally low-
rank parts and neglecting the potentially high-rank complex objects. For easy
understanding and better visualization, we use STDC [12] as an example.
Under the global low-rank assumption, it is seen that the restored sky is not
smooth while the window loses the details.

Although LRTC breaks through the limitation of relying
only on the observed adjacent pixels, and adopts a global low-
rank assumption on the completed image, we find the global
low-rank setting embodies a trade-off between restoring the
originally low-rank parts and neglecting the potentially high-
rank parts. The trade-off, depicted in Fig. 1, brings about two
issues: 1) the restoration of the parts associated with a lower
local rank will be hindered with insufficient observed pixels, 2)
the potentially high-rank complex objects will suffer the loss of
details due to over-smoothing. Therefore, the performance of
LRTC can potentially be enhanced by preserving the benefits
brought by the global rank setting, while catering for local
structures simultaneously.

To this end, we propose a novel multi-scale LRTC strategy
that restores the partially observed image in a Coarse-to-Fine
(C2F) manner. Succinctly, the image is first completed in the
coarse stage, where the whole image is restored by assuming
a global low-rank tensor structure. After capturing the overall
data structure in the first stage, the partially observed image
is divided into smaller patches in the subsequent fine stage,
where the patches are completed independently using the
same LRTC method. The restored patches then replace their
counterparts in the coarse completed image if they fulfill a
designated metric. Noticeably, the fine-grained stage can be
repeated multiple times to seek a satisfactory restored image,
and the experimental results demonstrate the necessity of
such successive fine-grained completion. We highlight that
the performance of existing LRTC methods can be boosted
taking advantage of this divide-and-conquer strategy. Our
main contributions are:

• A general and intuitive C2F strategy is proposed, which
effectively enhances the performance of existing LRTC
methods by seeking proper local ranks for both the low-



and high-rank parts, respectively.
• No more trade-off that aims to balance the restoration

performance of simple and complex parts is required.
• Utilization of the data from both coarse and fine hier-

archies, thus capturing both the global and local data
structures simultaneously.

• Extensive experiments and ablation study for validating
C2F, which demonstrate the superiority of C2F in image
completion versus existing algorithms.

II. RELATED WORKS

The methods to determine the global low-rank constraints in
the LRTC optimization problem can generally be divided into
two categories, namely, by generalizing the low-rank matrix
completion techniques or by employing tensor decomposition.

For the first category, Liu et al. [13] are the pioneers that
proposed tensor trace norm and defined it as the average
of trace norms of all unfolded matrices. The tensor with
missing entries is restored by minimizing this metric. However,
solving the optimization problem is nontrivial due to the
inter-dependency between the unfolded matrices. Therefore,
two enhanced methods (viz. FaLRTC and HaLRTC) are pro-
posed [9] wherein a relaxation is employed to separate the
dependent relations between the unfolded matrices such that a
globally optimal solution is achieved. However, implementing
the singular value decomposition needed in the tensor trace
norm is computationally expensive. To alleviate the compu-
tational burden, a parallel matrix factorization approach [14]
is proposed, which expresses each unfolded matrix of the
underlying tensor as the product of two low-rank factors that
are alternately updated.

The second category employs tensor decomposition tech-
niques. For example, Canonical Polyadic (CP) decomposi-
tion [15] is applied on the partially observed tensor in [16],
[17], which predicts the missing entries through the low-
rank constraint. In [18], the underlying tensor structure is
assumed to be a low-rank Tensor Train (TT) [19], whose
TT-cores are updated by solving the alternating least squares
problem. However, manually specifying the suitable tensor
ranks for these methods is challenging. To avoid that, the
authors of [20] and [21] applied trace norm regularization
to the factor matrices of CP and Tucker decomposition [15],
respectively. The low-rank constraint is then achieved by
adjusting the weight of trace norm regularization term in the
optimization problem.

Recently, Xue et al. [22] proposed a completion approach
using multilayer sparsity-based tensor decomposition, which
further decomposes the CP factors several times. We remark
that their algorithm still has the global low-rank assumption
for the first CP decomposition, on which all the following
decomposition is based. In contrast, the fine-grained comple-
tion in our strategy is not entirely dependent on the coarse
stage, which instead allows the LRTC methods to correct the
global assumption if the ranks are improper in the former
stages. Multiscale feature (MSF) is proposed in [23], which
aims to build a higher-order tensor containing more image

information, and then applies TT decomposition on it. In fact,
MSF-TT is orthogonal to the proposed C2F strategy, whose
performance can be further improved by the latter.

In short, the performance of existing LRTC methods belong-
ing to either category can be enhanced with C2F, which is able
to exploit both the global and local tensor rank information,
allowing a more comprehensive utilization of the partially
observed data.

III. PRELIMINARY

Tensors are multi-mode arrays, and a d-way tensor is de-
noted as A ∈ RI1×I2×···×Id . The element of A is represented
by A(i1, i2, . . . , id), where 1≤ ik ≤ Ik, k = 1, 2, . . . , d.
The numbers I1, I2, . . . , Id are called the dimensions of the
tensor A. We use boldface capital calligraphic letters A, B,
. . . to denote tensors, italic boldface capital letters A, B, . . .
to denote matrices, italic boldface letters a, b, . . . to denote
vectors, and roman letters a, b, . . . to denote scalars.

Definition 1. (Tensor mode-k matricization [15], p. 459)
The mode-k matricization of a tensor A ∈ RI1×···×Ik×···×Id

denoted by A(k) ∈ RIk×(I1×···×Ik−1×Ik+1×···×Id) and tensor
element A(i1, i2, · · · , id) maps to matrix element A(k)(ik, j),
where

j = 1 +

d∑
n=1,n̸=k

(in − 1)Jn with Jn =

n−1∏
m=1,m ̸=k

Im. (1)

Definition 2. (Tensor mode-k product [15], p. 460) Tensor
mode-k product involves a multiplication of a matrix with a
d-way tensor along one of its d modes. The mode-k product
B = A×k U of a tensor A ∈ RI1×···×Ik×···×Id with a matrix
U ∈ RR×Ik is defined by

B(i1, . . . , ik−1, j, ik+1, . . . , id)

=

Ik∑
ik=1

U(j, ik)A(i1, . . . , ik−1, ik, ik+1, . . . , id),
(2)

where B ∈ RI1×···×Ik−1×R×Ik+1×···×Id .

Definition 3. (Tensor Frobenius norm) The Frobenius norm
of a tensor A ∈ RI1×I2×···×Id is defined as

||A||F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
Id∑

id=1

A(i1, i2, · · · , id)2. (3)

Definition 4. (Tucker decomposition) The Tucker decomposi-
tion decomposes a d-way tensor A ∈ RI1×···×Id into a smaller
Tucker core S ∈ RR1×···×Rd and orthogonal factor matrices
Ui ∈ RIi×Ri (i = 1, . . . , d) as

A = S ×1 U1 ×2 · · · ×d Ud. (4)

IV. LOW-RANK TENSOR COMPLETION BOOSTED BY
COARSE TO FINE STRATEGY

For easy understanding, we now exemplify C2F using a
representative LRTC method called LRTC-TV-II [24], which
is based on Tucker decomposition. In Section IV-A, we



Fig. 2. The workflow of the C2F strategy. First, a coarse completed image Ztemp is obtained. Then, for each fine stage, the original partially observed image
Y is separated into N same-size patches, namely Y(1)

patch, Y(2)
patch, · · · , Y(N)

patch. Each patch has overlapping pixels with its neighbors to achieve a smooth
patch boundary during subsequent completion. Those patches are then completed separately via LRTC method, and N fine-grained completed patches can
be obtained, namely, Ẑ(1)

temp, · · · , Ẑ(N)
temp. The newly obtained patches satisfying the criterion will replace the corresponding patches in the Ztemp image.

The number of fine stages can be set according to the restoration requirements.

first introduce the problem formulation. In Section IV-B, we
elaborate the details of the proposed scheme and show the C2F
algorithm. Finally, we discuss the necessity of the successive
fine-grained completion in Section IV-C.

A. Problem Formulation

Given the partially observed tensor Y ∈ RI1×I2×···×Id , and
the observed tensor entry set Ω, the image restoration problem
solved by LRTC-TV-II [24] is as follows:

min
Z,S,{Uk}d

k=1

λ1

d∑
k=1

βk|FkZ(k)|+ λ2

d∑
k=1

||Uk||∗ + λ3||S||2F

subject to Z = S ×1 U1 ×2 · · · ×d Ud,

[Z]Ω = [Y ]Ω, (5)

where Z is the restored tensor, Z(k) is the mode-k matriciza-
tion of Z . The binary matrix Fk ∈ R(Ik−1)×Ik has the entries
Fk(i, i) = 1 and Fk(i, i + 1) = −1, while the remaining
elements are all zeros. The term |FkZ(k)| represents the total
variation (TV) regularization and is computed by summing
over the absolute values of all entries in FkZ(k). The operator
||·||∗ denotes the trace norm of a matrix. The completed tensor
Z is assumed to be in a low-rank Tucker format, namely,
Z = S ×1 U1 ×2 · · · ×d Ud, where S ∈ RI1×I2×···×Id

and Uk ∈ RIk×Ik . Note that instead of setting low Tucker
ranks directly, the objective (5) employs a trace norm term to
enforce the low-rank constraint in the factor matrix Uk. The
last term in (5) avoids overfitting, and βk is either 0 or 1
to indicate whether TV normalization is imposed on mode-k
of Z . For color image completion tasks, the setting would

be β1 = β2 = 1 and β3 = 0, since only spatial modes
are expected to be smooth. The above optimization problem
can be efficiently solved by alternating direction method of
multipliers (ADMM) [25], which introduces auxiliary matrices
to separate the inter-dependency between the matrices of (5).

B. C2F Strategy

As shown in Fig. 1, the existing LRTC methods aim to strike
a balance between the potentially low- and high-rank parts,
which is achieved by imposing a global low-rank assumption.
However, our proposed C2F strategy gets rid of such trade-off
by utilizing the data from both coarse and fine hierarchies,
and focusing more on the local structure (small patches) in
a successive manner. Here we present the details of the C2F
strategy, which generally consists of two tensor completion
stages, namely, the coarse stage and the fine stage.

1) Coarse Stage: In the coarse stage, the whole observed
image Y is completed by solving the optimization problem (5)
with LRTC-TV-II, and a coarsely completed image Ztemp is
obtained. Considering the limits brought by the global low-
rank assumption on restoring both the details-lacking (low-
rank) parts and the complex (high-rank) parts, we proceed to
the fine stage to pursue a higher-quality completion result.

2) Fine Stage: The fine stage aims to complete the image
from a fine-grained viewpoint, which can be repeated multiple
times until a satisfactory restored image is achieved. Every
single fine stage comprises three steps, namely, fine-grained
completion, patch comparison, followed by replacement.

Step 1: Fine-grained Completion. The original partially
observed image Y is separated into N patches with the same



Algorithm 1 C2F Strategy with LRTC-TV-II [24]
Input: Partially observed image Y ; observed image entry

set Ω; patch replace threshold ϵ; number of fine stage
implementations F ; weight parameters λk (k = 1, 2, 3).

Output: The restored image Z .

1: Ztemp ← Coarse stage completion;
2: f = 1 ← Count the number of fine stages;
3: while f ≤ F do
4: Y(k)

patch, k = 1, . . . , 22f ← Divide Y into 22f patches
of the same size;

5: λ2 = µλ2, µ > 1 ← Adjust λ2 to impose a local rank
assumption;

6: Z(k)
temp, k = 1, . . . , 22f . ← Divide Ztemp according to

the same partition used for Y in step 4;
7: for k from 1 to 22f do
8: Ẑ

(k)

temp ← Complete the k-th patch;

9: if gap(Z(k)
temp, Ẑ

(k)

temp) < ϵ then
10: Z(k)

temp = Ẑ
(k)

temp ← Replace its counterpart;
11: end if
12: end for
13: f = f + 1 ← Update the number of fine stages;
14: Update the threshold ϵ (cf. (9));
15: end while
16: Z=Ztemp.

size, namely Y(1)
patch, Y(2)

patch, · · · , Y(N)
patch. To obtain a smooth

boundary during the subsequent completion process, we let
every single patch have overlapping pixels with its neighbors.
Those patches are then completed separately with the selected
LRTC-TV-II technique with a local rank assumption on them,
which is achieved by adjusting λ2 in (5). The local rank is
smaller than the global rank we set at the very beginning in
the coarse stage and this setting is validated in Section V-C.

Step 2: Patch Comparison. After the first fine stage com-
pletion, N completed patches, Ẑ

(1)

temp, Ẑ
(2)

temp, · · · , Ẑ
(N)

temp,
under local rank assumption are obtained. To compare those
patches at the same position in different completion stages, we
divide the temporarily restored image Ztemp into N patches
following the partitions employed in the current fine stage to
obtain Z(1)

temp, Z(2)
temp, · · · , Z(N)

temp. We use Relative Squared
Error (RSE) to quantitatively compare the difference between
the two corresponding patches, which is formulated as below:

gap(Ẑ
(k)

temp,Z
(k)
temp) =

||Ẑ
(k)

temp −Z(k)
temp||F

||Z(k)
temp||F

. (6)

The greater the value, the greater the difference between the
completion results of the selected patch in the different stages.

Step 3: Replacement. Based on the difference between the
two corresponding patches, we rely on a pre-defined threshold
ϵ to decide whether to replace Z(k)

temp with Ẑ
(k)

temp:

Z(k)
temp =

{
Z(k)

temp, if gap(Ẑ
(k)

temp,Z
(k)
temp) ≥ ϵ,

Ẑ
(k)

temp, if gap(Ẑ
(k)

temp,Z
(k)
temp) < ϵ.

(7)

The reason to apply this replacement scheme is that the
completed image in the coarse stage captures the overall struc-
ture of the underlying ground truth, if the newly completed
patch Ẑ

(k)

temp has a large gap between its counterpart in Ztemp,
it risks deviating from the ground truth severely. Therefore,
we only replace those eligible newly completed patches into
the corresponding positions of Ztemp, where the overlapping
region of patches takes the averaged pixel values.

Since the assumed local rank is not necessarily suitable for
the patches in the fine stage, we prefer to implement the fine
stage several times in a sequential manner. The size of the
separated patch decreases along with the sequence of fine
stages. By repeating the fine stages, both the complex and
details-lacking parts are more likely to meet the suitable tensor
rank benefiting from the simultaneously reduced patch size
and assumed local rank in a divide-and-conquer manner. The
whole procedure of C2F strategy with specific LRTC-TV-II is
summarized in Algorithm 1, and the detailed workflow of the
general C2F strategy that can be combined with any LRTC
methods is displayed in Fig. 2.

C. Necessity of Successive Fine-grained Completion

The earlier fine stages with relatively large patches are
expected to capture the sub-global structure of the whole
image. If all intermediate fine stages are dropped, the transition
from global to local viewpoint will be too rapid, which ignores
the important sub-global relations between patches and weight
too much on the fine-grained neighbors. The omission leads
to restored results that are far from the ground truth. In
Section V-B, experimental results are provided which compare
the proposed C2F with the Short-Cut C2F (which contains
only the coarse stage at the beginning and the last fine stage
with the smallest patches) to verify this statement.

V. EXPERIMENTAL RESULTS

Extensive numerical experiments are conducted to evaluate
the color image restoration performance of the pure LRTC
methods and different versions of C2F strategy. In Sec-
tion V-A, we select four LRTC algorithms with publicly avail-
able official implementations, namely, HaLRTC1 [9], STDC2

[12], LRTC-TV-II3 [24], and LRTC-PDS4 [10] , comparing
their performance with and without the proposed C2F strategy.
Fig. 3 shows the ground truth of the eight benchmark color
images, and the size of each image is 256 × 256 × 3. In
Section V-B, we compare the proposed C2F with its short-
cut version to demonstrate the effectiveness of the gradual
refinement. Additionally, in Section V-C, we demonstrate the
rationality of the decreasing local rank setting employed in
our experiments. All computations were done on an Intel(R)
Core(TM) i5-6500 processor running at 3.2GHz with 16GB
RAM, and the implementation platform is MATLAB 2020b.

1The code of HaLRTC is available at: https://github.com/halrtc
2The code of STDC is available at: http://mp.cs.nthu.edu.tw/project stdc
3The code of LRTC-TV-II is available at: https://xutaoli.weebly.com
4The code of LRTC-PDS is available at: https://drive.google.com/lrtc pds

https://github.com/andrewssobral/mctc4bmi/blob/master/algs_tc/LRTC/HaLRTC.m
http://mp.cs.nthu.edu.tw/project_STDC
https://xutaoli.weebly.com/
https://drive.google.com/file/d/1o6pFTQFPX_2eSvXotF9KnHLanSTe7Set/view


Fig. 3. Ground truth of the eight benchmark color images.

Fig. 4. The C2F strategy helps LRTC methods to restore more details.

A. Pure LRTC Compared with C2F-LRTC

To evaluate the performance of image completion, we
employ the RSE and peak signal-to-noise ratio (PSNR) as the
evaluation metrics, which are widely used in image restoration
tasks. The definition of those two metrics are as follows:

RSE =
||Z −Ztrue||F

||Ztrue||F

PSNR = 10 log10

∏d
k=1 Ẑ

2

true

||Z −Ztrue||2F

(8)

where Z , Ztrue and Ẑtrue represent the completed image,
ground truth image, and the maximum value of the pixels in
the ground truth image, respectively. The performance of the
restoration method is inversely proportional to the value of
RSE and proportional to the value of PSNR.

For the C2F implementation, we set the number of fine stage
repetitions F = 3, and the initial patch replace threshold ϵ =
0.15. For the second and the third fine stages, the replacement
threshold will be updated as below:

ϵ =


3
2
max

(
gap(Ẑ(k)

temp,Z
(k)
temp)

)
, if F = 2,

3
2
·max

(
gap(Ẑ(k)

temp,Z
(k)
temp)rk

)
, if F = 3,

(9)

where the vector r is binary with elements 0 or 1, recording
whether a completed patch in the second fine stage replaces
its counterpart in the coarse stage or not. We remark that the
threshold becomes larger as the patch size decreases.

Table III summarizes the comparison results of the pure
LRTC and their C2F version under three different missing

TABLE I
PERFORMANCE COMPARISON BETWEEN THREE DIFFERENT COMPLETION
STRATEGIES COMBINED WITH LRTC-TV-II [24]. THE MISSING RATIO OF

THE EIGHT BENCHMARK COLOR IMAGES IS ALL 90%.

Method Airplane Baboon Barbara Facade
PSNR RSE PSNR RSE PSNR RSE PSNR RSE

LRTC-TV-II 22.80 0.098 21.22 0.165 23.87 0.131 21.79 0.158
C2F-LRTC-TV-II 23.28 0.085 23.05 0.161 24.75 0.119 24.40 0.117
Short-Cut C2F 22.77 0.093 19.64 0.193 20.51 0.193 21.07 0.171

Method House Lena Peppers Sailboat
PSNR RSE PSNR RSE PSNR RSE PSNR RSE

LRTC-TV-II 24.99 0.094 25.36 0.097 22.04 0.144 20.67 0.162
C2F-LRTC-TV-II 25.37 0.088 25.51 0.095 23.46 0.122 21.61 0.146
Short-Cut C2F 22.34 0.125 23.69 0.118 20.57 0.171 19.72 0.181

TABLE II
THE AVERAGE RELATIVE PATCH RANK (RPR) FOR PATCHES OF DIFFERENT

SIZES IN THE GROUND TRUTH. IN EACH COLUMN, THE AVERAGE RPR
DECREASES AS THE PATCH SIZE BECOMES SMALLER, WHICH IS

CONSISTENT WITH OUR EXPERIMENTAL SETTINGS.

Airplane Baboon Barbara Facade House Lena Peppers Sailboat

Coarse 0.2654 0.4889 0.3359 0.3190 0.2405 0.3072 0.2954 0.3647
Fine-1 0.2053 0.4366 0.2953 0.2651 0.2071 0.2572 0.2621 0.3068
Fine-2 0.1621 0.4141 0.2615 0.2266 0.1723 0.2249 0.2286 0.2801
Fine-3 0.1415 0.3867 0.2289 0.2004 0.1561 0.1978 0.2078 0.2529

ratios (viz. 0.7, 0.8, and 0.9). For easy reading, the C2F-LRTC
results are marked blue, and are put below the corresponding
pure LRTC method. It can be observed that under all miss-
ing ratios, the performance of every pure LRTC method is
enhanced after employing the C2F strategy. In other words,
C2F-LRTC can restore images with larger PSNR and smaller
RSE values. Furthermore, it can be seen that as the missing
ratio increases, C2F has a trend to boost the performance of
pure LRTC methods more significantly. For example, when
completing the image Barbara, the gaps between the PSNR
of STDC and C2F-STDC are 0.13, 1.06, and 4.13 as the
missing ratio increases. To sense the improvement brought
by C2F more intuitively, Fig. 4 shows the restoration results
of facade and sailboat under 90% missing ratio. These two
images are representative, since the image facade has regular
patterns while the image sailboat contains both the details-
lacking parts (e.g., the sky and the lake) and the complex
objects (e.g., the trees and the boat). It is noticeable that C2F-
LRTC restores both two kinds of images with richer details.
In summary, C2F can steadily improve the performance of
existing LRTC methods and retain more details.

B. The Effectiveness of Successive Fine-grained Completion

In this section, we validate the effectiveness of the suc-
cessive fine-grained completion by comparing the restoration
results obtained by pure LRTC, C2F-LRTC, and the Short-
Cut C2F-LRTC, which only contains the coarse stage at the
beginning and the last fine stage with the smallest patches.

The results are displayed in Table I, where we employ the
LRTC-TV-II algorithm and set the missing ratio as 90%. For
the Short-Cut C2F, we set a larger patch replace threshold
ϵ = 0.3 to ensure that the newly completed patches in the last



TABLE III
THE RESTORATION PERFORMANCE OF PURE LRTC AND C2F-LRTC METHODS UNDER DIFFERENT MISSING RATIOS.

Airplane 0.7 0.8 0.9 Baboon 0.7 0.8 0.9
PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE

HaLRTC 24.50 0.074 21.97 0.099 18.97 0.140 HaLRTC 21.94 0.148 20.48 0.175 18.60 0.220
C2F-HaLRTC 24.76 0.072 22.26 0.096 19.45 0.133 C2F-HaLRTC 22.16 0.144 20.69 0.171 18.62 0.217
STDC 22.77 0.090 18.67 0.145 15.25 0.236 STDC 17.19 0.256 16.50 0.277 14.48 0.350
C2F-STDC 23.19 0.086 21.16 0.137 20.13 0.123 C2F-STDC 20.19 0.176 19.50 0.197 17.19 0.256
LRTC-TV-II 26.91 0.056 27.33 0.068 22.80 0.098 LRTC-TV-II 23.30 0.129 22.32 0.143 21.22 0.165
C2F-LRTC-TV-II 27.84 0.051 27.35 0.067 23.28 0.085 C2F-LRTC-TV-II 23.47 0.126 22.52 0.141 23.05 0.161
LRTC-PDS 25.42 0.072 23.55 0.089 20.72 0.144 LRTC-PDS 23.17 0.136 22.07 0.154 20.72 0.245
C2F-LRTC-PDS 25.79 0.066 23.83 0.084 21.15 0.140 C2F-LRTC-PDS 23.25 0.131 22.15 0.150 20.75 0.239

Barbara 0.7 0.8 0.9 Facade 0.7 0.8 0.9
PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE

HaLRTC 25.27 0.112 22.65 0.151 19.06 0.229 HaLRTC 28.58 0.083 26.09 0.110 22.57 0.144
C2F-HaLRTC 25.72 0.106 22.87 0.147 19.26 0.223 C2F-HaLRTC 29.74 0.063 27.54 0.081 24.87 0.111
STDC 22.04 0.162 19.84 0.209 16.28 0.315 STDC 26.54 0.091 24.54 0.115 20.95 0.153
C2F-STDC 22.17 0.160 20.90 0.207 20.41 0.196 C2F-STDC 26.64 0.090 24.56 0.114 22.62 0.143
LRTC-TV-II 27.88 0.085 26.06 0.100 23.87 0.131 LRTC-TV-II 27.19 0.092 25.76 0.099 21.79 0.158
C2F-LRTC-TV-II 28.46 0.078 26.69 0.097 24.75 0.119 C2F-LRTC-TV-II 27.89 0.068 25.80 0.091 24.40 0.117
LRTC-PDS 26.86 0.107 25.13 0.132 22.13 0.185 LRTC-PDS 24.01 0.130 22.21 0.159 19.93 0.246
C2F-LRTC-PDS 27.00 0.098 25.38 0.124 22.34 0.178 C2F-LRTC-PDS 24.41 0.123 22.58 0.153 20.09 0.239

House 0.7 0.8 0.9 Lena 0.7 0.8 0.9
PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE

HaLRTC 25.79 0.084 23.72 0.107 20.54 0.154 HaLRTC 25.86 0.093 23.19 0.125 19.77 0.185
C2F-HaLRTC 25.92 0.830 24.07 0.103 21.05 0.145 C2F-HaLRTC 25.99 0.091 23.28 0.124 20.15 0.177
STDC 24.28 0.100 22.50 0.123 17.54 0.218 STDC 23.22 0.125 20.45 0.171 16.64 0.266
C2F-STDC 24.73 0.095 22.88 0.118 21.91 0.132 C2F-STDC 22.64 0.118 21.56 0.169 20.84 0.164
LRTC-TV-II 28.27 0.065 27.37 0.074 24.99 0.094 LRTC-TV-II 29.62 0.059 27.52 0.072 25.36 0.097
C2F-LRTC-TV-II 28.34 0.064 27.40 0.073 25.37 0.088 C2F-LRTC-TV-II 30.04 0.058 27.92 0.070 25.51 0.095
LRTC-PDS 27.19 0.075 25.63 0.096 22.77 0.146 LRTC-PDS 28.48 0.086 26.39 0.106 22.40 0.141
C2F-LRTC-PDS 27.30 0.066 25.74 0.089 22.85 0.142 C2F-LRTC-PDS 28.55 0.077 26.49 0.099 22.46 0.135

Peppers 0.7 0.8 0.9 Sailboat 0.7 0.8 0.9
PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE

HaLRTC 22.82 0.132 20.31 0.176 16.86 0.262 HaLRTC 22.78 0.127 20.60 0.164 17.81 0.226
C2F-HaLRTC 23.59 0.121 20.72 0.168 16.86 0.261 C2F-HaLRTC 23.09 0.123 20.87 0.159 17.93 0.223
STDC 21.37 0.156 18.61 0.214 16.31 0.347 STDC 20.58 0.184 18.10 0.245 14.87 0.317
C2F-STDC 21.48 0.154 20.64 0.210 18.42 0.219 C2F-STDC 20.85 0.178 18.23 0.185 19.12 0.194
LRTC-TV-II 27.75 0.076 25.25 0.103 22.04 0.144 LRTC-TV-II 25.21 0.103 23.42 0.118 20.67 0.162
C2F-LRTC-TV-II 28.37 0.072 26.17 0.096 23.46 0.122 C2F-LRTC-TV-II 26.61 0.092 23.76 0.112 21.61 0.146
LRTC-PDS 27.05 0.102 24.06 0.131 20.09 0.194 LRTC-PDS 23.95 0.123 22.13 0.153 19.37 0.209
C2F-LRTC-PDS 27.33 0.092 24.31 0.122 20.35 0.188 C2F-LRTC-PDS 24.33 0.117 22.46 0.147 19.58 0.205

fine stage can replace their counterparts in the coarse stage.
For the remaining hyper-parameters, we keep them the same
as in the original C2F. It is seen that instead of improving the
performance of pure LRTC, the Short-Cut C2F degrades the
restoration ability of the pure LRTC, which demonstrates the
importance of the successive refinement in our C2F procedure.

C. Local Rank Analysis

We then validate the correctness of our assumption that
smaller local ranks go along with decreasing patch sizes. We
compute the average relative patch ranks (RPR) for patches
of different sizes in the ground truth. The RPR is defined as
the ratio between the number of singular values (SVs), which
accounts for 90% of the total singular values summation, and
the patch size. Along this side, the patch size can be ignored
when comparing the patch ranks. The average RPR in the
coarse and three fine stages are listed in Table II. For all
eight images, it is seen that the smaller the patch size, the
smaller RPR, which we adopt as a general rule applicable to
most real-life images. We emphasize that the decreasing local
ranks in the fine stages will not degrade the global rank of

the restored image. For instance, the global ranks (number of
SVs that takes up 90% of the summation of the total SVs) of
the image facade restored by the pure LRTC-TV-II and C2F-
LRTC-TV-II in Fig. 4 are 49 and 50, respectively. Therefore,
we conclude that it is insufficient to set a global rank only
to complete partially observed images, and appropriate local
ranks are important to restore local structures.

VI. CONCLUSION

This work presents a general and easily implementable
coarse-to-fine framework called C2F, which can effectively
boost the performance of any existing LRTC approach with
the mindfully designed progressive refinement process and
appropriate local ranks. To the best of our knowledge, it is
the first time that global and local ranks are both utilized for
completing images. By employing the proposed C2F strategy,
both the global and local tensor structures are utilized, leading
to a higher completion performance. Extensive experiments are
done to demonstrate the practicality of C2F, which sheds light
on boosting images restoration results and LRTC techniques
performance in a divide-and-conquer manner.
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